A new clustering technique for function approximation

نویسندگان

  • Jesús González
  • Ignacio Rojas
  • Julio Ortega
  • Alberto Prieto
چکیده

To date, clustering techniques have always been oriented to solve classification and pattern recognition problems. However, some authors have applied them unchanged to construct initial models for function approximators. Nevertheless, classification and function approximation problems present quite different objectives. Therefore it is necessary to design new clustering algorithms specialized in the problem of function approximation. This paper presents a new clustering technique, specially designed for function. approximation problems, which improves the performance of the approximator system obtained, compared with other models derived from traditional classification oriented clustering algorithms and input-output clustering techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks

This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...

متن کامل

A New Technique for Image Zooming Based on the Moving Least Squares

In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...

متن کامل

Using fuzzy logic to improve a clustering technique for function approximation

Clustering algorithms have been applied in several disciplines successfully. One of those applications is the initialization of Radial Basis Function (RBF) centers composing a Neural Network, designed to solve functional approximation problems. The Clustering for Function Approximation (CFA) algorithm was presented as a new clustering technique that provides better results than other clustering...

متن کامل

A Possibilistic Approach to RBFN Centers Initialization

Clustering techniques have always been oriented to solve classification and pattern recognition problems. This clustering techniques have been used also to initialize the centers of the Radial Basis Function (RBF) when designing an RBF Neural Network (RBFNN) that approximates a function. Since classification and function approximation problems are quite different, it is necessary to design a ne...

متن کامل

Function Approximation Approach for Robust Adaptive Control of Flexible joint Robots

This paper is concerned with the problem of designing a robust adaptive controller for flexible joint robots (FJR). Under the assumption of weak joint elasticity, FJR is firstly modeled and converted into singular perturbation form. The control law consists of a FAT-based adaptive control strategy and a simple correction term. The first term of the controller is used to stability of the slow dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2002